Indexed Norlund Summability Factor of Improper Integrals
نویسندگان
چکیده
منابع مشابه
On absolute generalized Norlund summability of double orthogonal series
In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal seriesis summable $|N,p,q|$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose ofthis paper to extend this result...
متن کاملSolving Improper Integrals with Maple
This study takes the mathematical software Maple as the auxiliary tool to evaluate some type of improper integrals. We can obtain the infinite series form of this type of improper integrals by using three important methods (i.e., differentiation with respect to a parameter, differentiation term by term, and integration term by term). In addition, we propose two improper integrals to do calculat...
متن کاملAdaptive Integration and Improper Integrals
Let R be the class of all functions that are properly Riemann-integrable on [0, 1], and let IR be the class of all functions that are properly Riemann-integrable on [a, 1 ] for all a > 0 and for which
متن کاملComparison theorem for improper integrals
This is a complement to the comparison theorem for improper integrals in the textbook. The vanilla version presented in the textbook is good enough to solve some very easy examples and it becomes exponentially gory with the complexity of the integral. Fortunately it is not hard to refine the statement in the book, and turn it into a powerful tool to estimate the convergence of arbitrarily compl...
متن کاملOn Tauberian Conditions for (c, 1) Summability of Integrals
We investigate some Tauberian conditions in terms of the general control modulo of the oscillatory behavior of integer order of continuous real functions on [0,∞) for (C, 1) summability of integrals. Moreover, we obtain a Tauberian theorem for a real bounded function on [0,∞).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2019
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1344/1/012019